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N U M E R I C A L  S O L U T I O N  OF T H E  P R O B L E M  OF A N  ICE S H E E T  

U N D E R  A M O V I N G  LOAD 

V. D. Zhestkaya UDC 532.526.2 

A method for analyzing the bending of an ice sheet subjected to a moving load is proposed. The 
problem is solved in a dynamic formulation. The algorithm of solution is based on the finite- 
element method and the finite-difference method. The method proposed allows one to determine 
the stress-strain state of an ice sheet for any law of motion of a load over ice. Two versions of 
initial conditions are considered. Examples of calculations are given. 

Analysis of the stress-strain state of an ice sheet under the action of various moving loads makes it 
possible to solve applied problems that  arise in navigation and in the operation of engineering structures 
in river and seawater areas. Two classes of these problems seem to be of significant interest: 1) analysis of 
the possibilities of the resonant method of ice'breaking, i.e., excitation of flexure-gravity waves of sufficient 
amplitude in an ice sheet by a moving load [1], 2) estimation of the carrying capacity of an ice sheet which 
serves as a carrying platform. Extensive investigations [2-4] have been carried out to solve these problems 
for the case of an infinite continuous ice field and steady motion of a load. The available solutions are not 
applicable for actual ice conditions (finite dimensions of water areas, the presence of hummocks, mines, cracks, 
etc.). The drawbacks of the above-mentioned theoretical studies can be eliminated by numerical solution of 
the differential equations of vibrations of an ice sheet with allowance for nonstationary motion of the load. 

As the basic equations modeling the problem considered, we use [2] the equation of viscoelastic 
vibrations of ice under the action of a moving load, 

0ol ' 
3 1 + rf  V4w + pwgw + pih - ~  + p~ " ~  ~=o 

the Laplace equation 

(9~(I) (92(I) 02(I) 
0x---z + + = 0, (2) 

and the boundary conditions at the bot tom of the basin and at the boundary between ice and water: 

I = 0, (3) 
Oz ~=-tI 

Ow z=o  
Ot  = O. (4) 

Here (I) is the fluid-motion potential, w is the deflection of the ice sheet, G is the shear modulus of ice, h is 
the thickness of the ice sheet, H is the basin depth, pi and pw are the densities of ice and water, g is the 
acceleration of gravity, vf is the strain-relaxation time, and p is the external-force intensity. The coordinate 
axes x and y lie in the plane of the ice sheet~ the x axis along the direction of motion of the load and the z 
axis directed upward. 
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The existing analytical solutions of this problem [2] have a number of drawbacks: the solution of Eq. 
(1) has a discontinuity of the second kind; inhomogeneities and discontinuities in ice in the form of cracks, 
mines, hummocks, variable thickness of ice, etc. are not taken into account; the investigations have not been 
brought up to the stage of engineering analysis. 

The approach to the above problem proposed in this paper is free from the indicated drawbacks. A 
numerical method is used for the first time to determine the stress-strain state of an ice sheet subjected to a 
moving load. Moreover, the analysis allows for both rectilinear and curvilinear motion of the load. 

We write the deflection w and the potential (I) as the finite sums 
n 

w = w i n ,  (5 )  
m----.~ 1 

n n 

(~ = ~ ,  Om= ~_, r  + H) (kin = const). (6) 
m = l  m = l  

We substitute (5) and (6) into aqs. (1)-(4). Equation (3) is thus satisfied identically. Eliminating Vm 
from the remaining equations, we obtain the system 

( G ~ 3 (  0 )  02win coth k i n ,  02wm~ 
- -  1 + V I "~ V4Wrn + pwgwm + pih ~ + pw = 

m=l km Ot 2 ] p(t), (7) 
O (O wm 02Wm ) 
O--t \ Ox 2 + Oy - - - 5 -  + k2 wm_ = O. 

Using the finite-element method, we construct a discrete model of the ice plate by setting 
n 

win(x, y, t) = y~ g i ( x ,  y)qim(t), (8) 
i = 1  

where Ni(x, y) are the shape functions and qim(t) are the nodal displacements, which are the components of 
the vector (column matrix) of the nodal displacements [q]m(t): 

qlm(t) 
[q]m(t)= q2m(t) 

q.m(t) 
Here and in formulas (5) and (6), n is the number of nodal displacements. 

It should be noted that the value of n is determined by the type and number of finite elements that 
form a discrete model of the ice plate. The number of finite elements required to attain sufficient accuracy 
is estimated for each specific problem. The questions of convergence with increase in the number of finite 
elements are considered in finite-element theory. 

With allowance for (8), the deflection of the sheet is written as 

n 

where qi(t) = ~_, qim(t). 

[q](t): 

n n n n 

w = ~_, wm = ~_, ~ Ni(x ,y)qi ,n( t )= ~_, Ni(x,y)qi( t) ,  
m=l m = l  i----1 i = l  

The functions qi(t) are the components of the total vector (column matrix) of the nodal displacements 

[ ] [q](t) = q2(t) = n [q]m(t). 

 ii;) -- 

(9) 
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Introducing (8) into system (7) and applying the generalized Bubnov-Galerkin method, we arrive at 
the following system of matrix equations: 

' ~  ([M],.. d2[q]m + [C] d[q]m ) 
m : l  dt 2 T + [K][qlm = [P](t), ( [S ] -  k2[T]) d[q]m - -  ~ = 0 .  (10) 

Here [P](t) is the vector (column matrix) of external nodal forces and the matrix [Mira depends on kin. 
To solve system (10), we use the finite-difference method. We divide the time interval into l equal 

segments. The first and second derivatives at the r th node of the grid are approximated by the formulas 

( d[qlm~ [qlrn,r+l --[qlm,r--1 (d2[qlm~ [qlm,r+l -- 2[qlm,r + [qlrn,r-1 (11) 
dt ] r  = 2At ' \ ~ / r  = (At) ~ ' 

where At is the grid size and [q]m,r is the value of the vector [q]m at the rth node. 
Substitution of (11) into system (10) gives the matrix equations 

n 

([A]m[q]m,.+l + [B]m[q]m,. + [D].,[q]m,r-1) = [P](t)(At) 2, 
,n=1 (12) 

([S] -- k2m[Tl)([qlm,r+l - [qlm,r-1) = O, r = O, 1, 2 , . . .  ,l, 

a t  a t  
where [A]m = [M]m + y [C], [B]m = (At)2[K] - 2[M],~ and [D],, -- [M],, - -~-[C]. 

The second equation of system (12) is satisfied if [q]m,r is written as 

[q]m,r = [X]mo~r,,,r, (13) 

where tXl~ is the eigenvector of the matrix [ S ] -  k2[T] that corresponds to the eigenvalue k~ and a~,~ is an 
unknown coefficient. 

Substituting (13) into the first equation of system (12), we obtain 
n 

([Alm[Xl,,a,,,,+l + [Blm[X]mam,, + [Dlm[Xl . , a . , ,~ - l )  = [P](t)(At) 2 (r = O, 1, 2 , . . .  ,l). (14) 
m = l  

Equation (14) must be supplemented by initial conditions. Let, at the initial time t = 0, the nodal 
displacement vector [q] be equal to [.to] and its velocity to []0]: 

[q](O) = If01,  (dd~)  t=~ = []0]. (15) 

It follows from (9), (11), (13), and (15) that 
n n 

Z :  : [/01, 
m = l  r n = l  

- ) = - 2 [ ] 0 ] A t .  (16) 

From Eqs. (16), we find Cr,n,o and am = ~m,--1 -- am,1. Substituting the values of c~m,0 and am,-1 = am +C~m,1 
into (14), we obtain the system for c~m,r (r = 1, 2 , . . . ,  l) in the final form 

n n n 

([elm + [Aim)IX]mare,1 = [PI(0)(At) 2 -- ~ [Blrn[Xlrn~m,o - ~ [Dl,,[Xl,,,am, 
m = l  r n = l  r n = l  

n n 71 

[AI..,[X],-,-,o~,,-,,,-+I = [P](rAt)(At)  2 - ~ ,  [B]m[X]m(~m,r - ~ [Dl.,[X].,o~,,--1, (17) 
m = l  r n = l  rn-----1 

r = 1, 2 , . . . , l - 1 .  

Sometimes, it is convenient to specify initial conditions in the form 

[q](0) = [f0], [ q l ( -A t )  = [ f - l ] .  (18) 
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In this case, proceeding as previously, we arrive at the sys tem 
n rt 

[A]m[X]mam,r+z = [P](rAt)(At)  2 - ~_~ [B],~[X],,,am,~- 
m = l  rn-----1 

(r = 0, 1, 2 , . . . , l -  1), 

where am,-1 and am,0 are determined from conditions (18). 

71 

Y~ [D]m[X]mam,r-1 
m = l  

(19) 

Determining am,r from Eqs. (17) and (19), we calculate the nodal displacements at the rth node of 
n 

the time grid: [q]T = ~ [Xlmam,r. 
rn=l 

The above algorithm was used to solve a number of problems of the nonstationary motion of a point load 
over an ice plate, three of which are given below as examples.  In all the cases, we considered a rectangular ice 
plate whose contour was rigidly fixed. The plate was divided into square finite elements with side a (Fig. 1). 
The load moved along the x axis. The calculation scheme and discrete model were the same in all three 
problems and the laws of motion of the load over ice were different. 

P r o b l e m  1. At the initial time, an immovable point load P is at the point A. The corresponding 
initial static deflection occurs in the ice plate. The following law of motion of the load P is considered: the 
load P begins to move along the x axis with constant acceleration, and in t ime TO, it attains velocity v, at 
which it keeps on moving in the same direction. The parameters of the problem are as follows: P = 0.4.106 N, 
a = 50 m, TO = 25 sec, v = 4 m/sec,  At = 0.3125 sec, G = 0 .2 .10 l~ Pa, h = 0.5 m, H = 5 m, pi = 900 kg /m 3, 
p~, = 1000 kg/m 3, and r I = 10 sec. In solving the problem, we considered the time interval in which the load 
P moved from the point A to the point B. The results of solution of the problem were the values of deflection 
and stresses at the nodes of the discrete model of the ice plate at the specified times corresponding to the 
nodes of the time grid. 
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Figure 2 shows diagrams of plate deflections at points along the x axis for several times. 
P r o b l e m  2. Conditions are the same as in the previous problem but the acceleration time T0 is equal 

to zero. Figure 3 shows diagrams of deflections along the x axis for the same positions of the load P as in 
Problem 1. 

P r o b l e m  3. The load P is applied instantaneously at the point A (see Fig. 1) and has horizontal 
velocity v (the situation is similar to ice landing of a plane). Figure 4 shows diagrams of the deflections along 
the x axis for several positions of the load P.  

Analysis of the calculation results for Problem 3 shows the significant effect of the response of the elastic 
foundation during the initial stage of motion of the load (the deflections are less than static deflections). The 
values of deflections exceeding those in Problems 1 and 2 can be explained by wave interference (the shock 
load excites ring diverging waves, which are superposed on the waves produced by the subsequent translational 
motion of the load). 

The results of solution of Problems 1 and 2 show that  the method in question allows for the effect of 
acceleration in the  initial stage on the stress-strain state of the ice plate. 

A number of problems were solved by the. proposed method to study the relation between the maximum 
deflection and the velocity of the moving load. The values of maximum deflections were determined for various 
velocities and the same values of the remaining parameters as those in Problem 2 (except for the length of the 
ice field, which was equal to 750 m). The calculation results are plotted in Fig. 5, where Wmax is the maximum 
deflection for the moving load and wst is the maximum static deflection. One can see that the function 
Wmax/Wst has two extrema in the velocity range considered. Knowledge of the corresponding velocities is 
useful in choosing regimes of motion of the load. The velocity at which Wmax/Wst reaches a maximum (the 
resonant velocity) can be recommended for the task of ice breaking. On the contrary, if it is required to 
preserve its carrying capacity, one should choose the velocity for which the maximum deflections are minimal 
or, at least, do not exceed static deflections. 
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Thus, the method proposed here can be used to calculate the stress-strain state of an ice cover for 
any law of motion of a load over a bounded or unbounded water area, to take into account the interference 
processes occurring in acceleration or deceleration, and to consider regimes of going out of the load to the 
shore and overcoming obstacles in the form of mines and hummocks. 
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